10 research outputs found

    On the Exploitation of a High-throughput SHA-256 FPGA Design for HMAC

    Get PDF
    High-throughput and area-efficient designs of hash functions and corresponding mechanisms for Message Authentication Codes (MACs) are in high demand due to new security protocols that have arisen and call for security services in every transmitted data packet. For instance, IPv6 incorporates the IPSec protocol for secure data transmission. However, the IPSec's performance bottleneck is the HMAC mechanism which is responsible for authenticating the transmitted data. HMAC's performance bottleneck in its turn is the underlying hash function. In this article a high-throughput and small-size SHA-256 hash function FPGA design and the corresponding HMAC FPGA design is presented. Advanced optimization techniques have been deployed leading to a SHA-256 hashing core which performs more than 30% better, compared to the next better design. This improvement is achieved both in terms of throughput as well as in terms of throughput/area cost factor. It is the first reported SHA-256 hashing core that exceeds 11Gbps (after place and route in Xilinx Virtex 6 board)

    A Modified AES Based Algorithm for Image Encryption

    No full text
    Abstract—With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm

    Reconfigurable Secure Video Codec Based on DWT and AES Processor

    No full text
    In this paper, we proposed a secure video codec based on the discrete wavelet transformation (DWT) and the Advanced Encryption Standard (AES) processor. Either, use of video coding with DWT or encryption using AES is well known. However, linking these two designs to achieve secure video coding is leading. The contributions of our work are as follows. First, a new method for image and video compression is proposed. This codec is a synthesis of JPEG and JPEG2000,which is implemented using Huffman coding to the JPEG and DWT to the JPEG2000. Furthermore, an improved motion estimation algorithm is proposed. Second, the encryptiondecryption effects are achieved by the AES processor. AES is aim to encrypt group of LL bands. The prominent feature of this method is an encryption of LL bands by AES-128 (128-bit keys), or AES-192 (192-bit keys), or AES-256 (256-bit keys).Third, we focus on a method that implements partial encryption of LL bands. Our approach provides considerable levels of security (key size, partial encryption, mode encryption), and has very limited adverse impact on the compression efficiency. The proposed codec can provide up to 9 cipher schemes within a reasonable software cost. Latency, correlation, PSNR and compression rate results are analyzed and shown

    Optimized continuous wavelet transform algorithm architecture and implementation on FPGA for motion artifact rejection in radar-based vital signs monitoring

    No full text
    Abstract The continuous wavelet transform (CWT) has been used in radar-based vital signs detection to identify and to remove the motion artifacts from the received radar signals. Since the CWT algorithm is computationally heavy, the processing of this algorithm typically results in long processing time and complex hardware implementation. The algorithm in its standard form typically uses software processing tools and is unable to support high-performance data processing. The aim of this research is to design an optimized CWT algorithm architecture to implement it on Field Programmable Gate Array (FPGA) in order to identify the unwanted movement introduced in the retrieved vital signs signals. The optimization approaches in the new implementation structure are based on utilizing the frequency domain processing, optimizing the required number of operations and implementing parallel processing of independent operations. Our design achieves significant processing speed and logic utilization optimization. It is found that processing the algorithm using our proposed hardware architecture is 48 times faster than processing it using MATLAB. It also achieves an improvement of 58% in speed performance compared to alternative solutions reported in literature. Moreover, efficient resources utilization is achieved and reported. This advanced performance of the proposed design is due to consciously implementing comprehensive approaches of multiple optimization techniques that results in multidimensional improvements. As a result, our achieved design is suitable for utilization in high-performance data processing applications
    corecore